Criteria 1	0	8	16	24	32	40
Criteria 2	0	8	16	24	32	40
Criteria 3 \& 4	0	4	8	12	16	20

MINI SITUATIONAL PROBLEM \#5: UPGRADES FOR THE SCHOOL

Philemon Wright High School is planning to purchase some futuristic items for the upcoming year. The budget is $\$ 32000$.

Purchase 1:

Admin is going to buy Macbooks (\$1000 each) and Dells (\$500 each). As an experiment, the school plans to purchase 30 laptops for a total cost of \$20 500.

Purchase 2:

To go with the computers the school will use the remaining budget to start a new movie making course. To stock the media room it will cost $\$ 10,000$.

In addition, new video cameras will be rented for the year. One for each computer. It costs $\$ 0.015 / \mathrm{hr}$ for a camera compatible with a Macbook and $\$ 0.014 / \mathrm{hr}$ for a camera with a Dell. The cameras are rented for 12 hours a day for 7 days a week for 44 weeks a year .

How many Macbooks and how many Dells will the school purchase? Can the school afford the rental fees of the camera equipment?

Your solution: ANSWER KEY

Purchase 1:

	\# of laptops	Cost \$
Macbooks	x	1000x
Dells	$30-x$	$\begin{aligned} & 500(30-x) \\ & =15000-500 x \end{aligned}$
$\begin{aligned} 1000 x+15000-500 x & =20500 \\ 500 x & =5500 \\ x & =11 \end{aligned}$		

Therefore they will purchase: 11 Macbooks for $\$ 11000$ And 19 Dells for \$ 9500

Purchase 2:

Let x be the number of hours to rent.
Total cost $=10000+0.015(11) x+0.014(19) x$

$$
\begin{aligned}
& =10000+0.165 x+0.266 x \\
& =10000+0.431 x
\end{aligned}
$$

Total rental hours: $(12)(7)(44)=3696$ hours
Total cost $=10000+0.431(3696)=\$ 11592.976$

Total for purchases 1 and 2:
$11000+9500+11592.98=32092.98$

The school will purchase 11 Macbooks and 19 Dells.
The school cannot afford the rental fees,
they are short by $\$ 92.98$

Criteria 1	0	8	16	24	32	40	
Criteria 2	0	8	16	24	32	40	
Criteria 3 \& 4	0	4	8	12	16	20	

MINI SITUATIONAL PROBLEM \#6:
 KAMAKAZI POOL

Jen always wanted an in-ground pool. She has hired you as a landscape architect to help her design the pool and fit it into her budget. Here is the layout that Jen wants for her backyard:

Pool

- The pool is a rectangle.
- The length measures 8 times more than the width.
- She estimates the perimeter to be more than 54 m but less than 90 m .
- Jen needs to install a fence around the pool and the cost is \$50 per meter.
- She needs to put a cover on the pool which costs $\$ 40$ / m^{2}.

Slide

- On the slide, the ladder rungs are 50 cm apart.
- She wants to cover the rungs with grip tape.
- The cost of covering one rung is $\$ 10.75$.

3 m

Your solution: ANSWER KEY

Pool:

$8 x$
Fence:
54 < perimeter < 90
$54<18 x<90$
$3<x<5$
Min perimeter $=54 \mathrm{~m}$
Max perimeter $=90 \mathrm{~m}$
Min cost of fence $=\$ 2700$
Max cost of fence $=\$ 4500$

Cover: Area $=8 x^{2}$
\min area $=72 \mathrm{~m}^{2}$ \max area $=200 \mathrm{~m}^{2}$
min cost of cover $=\$ 2880$ max cost of cover $=\$ 8000$

Slide:

$$
\begin{aligned}
& \text { Ladder: } \\
& \begin{aligned}
\mathrm{a}^{2} & =\mathrm{c}^{2}-\mathrm{b}^{2} \\
& =5^{2}-3^{2} \\
& =25-9 \\
& =16 \\
\mathrm{a} & =4 \mathrm{~m}
\end{aligned}
\end{aligned}
$$

number of rungs $=4 / 0.5=8$ rungs
cost of rungs $=8(10.75)=\$ 86$
\min cost $=2700+2880+86=\$ 5666$
\max cost $=4500+8000+86=\$ 12586$

What is the minimum and maximum cost of the job?

